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Clustering by Passing Messages
Between Data Points
Brendan J. Frey* and Delbert Dueck

Clustering data by identifying a subset of representative examples is important for processing
sensory signals and detecting patterns in data. Such “exemplars” can be found by randomly
choosing an initial subset of data points and then iteratively refining it, but this works well only if
that initial choice is close to a good solution. We devised a method called “affinity propagation,”
which takes as input measures of similarity between pairs of data points. Real-valued messages are
exchanged between data points until a high-quality set of exemplars and corresponding clusters
gradually emerges. We used affinity propagation to cluster images of faces, detect genes in
microarray data, identify representative sentences in this manuscript, and identify cities that are
efficiently accessed by airline travel. Affinity propagation found clusters with much lower error than
other methods, and it did so in less than one-hundredth the amount of time.

Clustering data based on a measure of
similarity is a critical step in scientific
data analysis and in engineering sys-

tems. A common approach is to use data to
learn a set of centers such that the sum of
squared errors between data points and their
nearest centers is small. When the centers are
selected from actual data points, they are called
“exemplars.” The popular k-centers clustering
technique (1) begins with an initial set of ran-
domly selected exemplars and iteratively refines
this set so as to decrease the sum of squared
errors. k-centers clustering is quite sensitive to
the initial selection of exemplars, so it is usually
rerun many times with different initializations in
an attempt to find a good solution. However,
this works well only when the number of clus-
ters is small and chances are good that at least
one random initialization is close to a good
solution. We take a quite different approach
and introduce a method that simultaneously
considers all data points as potential exem-
plars. By viewing each data point as a node in
a network, we devised a method that recur-
sively transmits real-valued messages along
edges of the network until a good set of ex-
emplars and corresponding clusters emerges.
As described later, messages are updated on
the basis of simple formulas that search for
minima of an appropriately chosen energy
function. At any point in time, the magnitude
of each message reflects the current affinity
that one data point has for choosing another
data point as its exemplar, so we call our meth-
od “affinity propagation.” Figure 1A illus-
trates how clusters gradually emerge during
the message-passing procedure.

Affinity propagation takes as input a col-
lection of real-valued similarities between data
points, where the similarity s(i,k) indicates

how well the data point with index k is suited
to be the exemplar for data point i. When the
goal is to minimize squared error, each sim-
ilarity is set to a negative squared error (Eu-
clidean distance): For points xi and xk, s(i,k) =
−||xi − xk||

2. Indeed, the method described here
can be applied when the optimization criterion is
much more general. Later, we describe tasks
where similarities are derived for pairs of im-
ages, pairs of microarray measurements, pairs of
English sentences, and pairs of cities. When an
exemplar-dependent probability model is avail-
able, s(i,k) can be set to the log-likelihood of
data point i given that its exemplar is point k.
Alternatively, when appropriate, similarities
may be set by hand.

Rather than requiring that the number of
clusters be prespecified, affinity propagation
takes as input a real number s(k,k) for each data
point k so that data points with larger values
of s(k,k) are more likely to be chosen as ex-
emplars. These values are referred to as “pref-
erences.” The number of identified exemplars
(number of clusters) is influenced by the values
of the input preferences, but also emerges from
the message-passing procedure. If a priori, all
data points are equally suitable as exemplars, the
preferences should be set to a common value—
this value can be varied to produce different
numbers of clusters. The shared value could
be the median of the input similarities (resulting
in a moderate number of clusters) or their
minimum (resulting in a small number of
clusters).

There are two kinds of message exchanged
between data points, and each takes into ac-
count a different kind of competition. Mes-
sages can be combined at any stage to decide
which points are exemplars and, for every
other point, which exemplar it belongs to. The
“responsibility” r(i,k), sent from data point i to
candidate exemplar point k, reflects the ac-
cumulated evidence for how well-suited point
k is to serve as the exemplar for point i, taking
into account other potential exemplars for
point i (Fig. 1B). The “availability” a(i,k), sent

from candidate exemplar point k to point i,
reflects the accumulated evidence for how
appropriate it would be for point i to choose
point k as its exemplar, taking into account the
support from other points that point k should be
an exemplar (Fig. 1C). r(i,k) and a(i,k) can be
viewed as log-probability ratios. To begin
with, the availabilities are initialized to zero:
a(i,k) = 0. Then, the responsibilities are com-
puted using the rule

rði,kÞ ← sði,kÞ − max
k ′ s:t: k ′≠ k

faði,k ′Þ þ sði; k ′Þg
ð1Þ

In the first iteration, because the availabilities
are zero, r(i,k) is set to the input similarity
between point i and point k as its exemplar,
minus the largest of the similarities between
point i and other candidate exemplars. This
competitive update is data-driven and does not
take into account how many other points favor
each candidate exemplar. In later iterations,
when some points are effectively assigned to
other exemplars, their availabilities will drop
below zero as prescribed by the update rule
below. These negative availabilities will de-
crease the effective values of some of the input
similarities s(i,k′) in the above rule, removing
the corresponding candidate exemplars from
competition. For k = i, the responsibility r(k,k)
is set to the input preference that point k be
chosen as an exemplar, s(k,k), minus the largest
of the similarities between point i and all other
candidate exemplars. This “self-responsibility”
reflects accumulated evidence that point k is an
exemplar, based on its input preference tem-
pered by how ill-suited it is to be assigned to
another exemplar.

Whereas the above responsibility update
lets all candidate exemplars compete for own-
ership of a data point, the following availabil-
ity update gathers evidence from data points
as to whether each candidate exemplar would
make a good exemplar:

aði,kÞ ← min
n
0, rðk,kÞ þ

X
i′s:t: i′∉fi;kg

maxf0,rði′,kÞg
o

ð2Þ
The availability a(i,k) is set to the self-
responsibility r(k,k) plus the sum of the positive
responsibilities candidate exemplar k receives
from other points. Only the positive portions of
incoming responsibilities are added, because it
is only necessary for a good exemplar to explain
some data points well (positive responsibilities),
regardless of how poorly it explains other data
points (negative responsibilities). If the self-
responsibility r(k,k) is negative (indicating that
point k is currently better suited as belonging to
another exemplar rather than being an exem-
plar itself), the availability of point k as an
exemplar can be increased if some other points
have positive responsibilities for point k being
their exemplar. To limit the influence of strong
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incoming positive responsibilities, the total
sum is thresholded so that it cannot go above
zero. The “self-availability” a(k,k) is updated
differently:

aðk,kÞ ←
X

i′ s:t: i′≠k

maxf0,rði′,kÞg ð3Þ

This message reflects accumulated evidence that
point k is an exemplar, based on the positive
responsibilities sent to candidate exemplar k
from other points.

The above update rules require only simple,
local computations that are easily implemented
(2), and messages need only be exchanged be-
tween pairs of points with known similarities.
At any point during affinity propagation, avail-
abilities and responsibilities can be combined to
identify exemplars. For point i, the value of k
that maximizes a(i,k) + r(i,k) either identifies
point i as an exemplar if k = i, or identifies the

data point that is the exemplar for point i. The
message-passing procedure may be terminated
after a fixed number of iterations, after changes
in the messages fall below a threshold, or after
the local decisions stay constant for some num-
ber of iterations. When updating the messages,
it is important that they be damped to avoid
numerical oscillations that arise in some cir-
cumstances. Each message is set to l times its
value from the previous iteration plus 1 – l
times its prescribed updated value, where
the damping factor l is between 0 and 1. In
all of our experiments (3), we used a default
damping factor of l = 0.5, and each iteration
of affinity propagation consisted of (i) up-
dating all responsibilities given the availabil-
ities, (ii) updating all availabilities given the
responsibilities, and (iii) combining availabil-
ities and responsibilities to monitor the ex-
emplar decisions and terminate the algorithm

when these decisions did not change for 10
iterations.

Figure 1A shows the dynamics of affinity
propagation applied to 25 two-dimensional data
points (3), using negative squared error as the
similarity. One advantage of affinity propagation
is that the number of exemplars need not be
specified beforehand. Instead, the appropriate
number of exemplars emerges from the message-
passing method and depends on the input ex-
emplar preferences. This enables automatic
model selection, based on a prior specification
of how preferable each point is as an exemplar.
Figure 1D shows the effect of the value of the
common input preference on the number of
clusters. This relation is nearly identical to the
relation found by exactly minimizing the squared
error (2).

We next studied the problem of clustering
images of faces using the standard optimiza-

Fig. 1. How affinity propagation works.
(A) Affinity propagation is illustrated for
two-dimensional data points, where nega-
tive Euclidean distance (squared error) was
used to measure similarity. Each point is
colored according to the current evidence
that it is a cluster center (exemplar). The
darkness of the arrow directed from point i
to point k corresponds to the strength of
the transmitted message that point i
belongs to exemplar point k. (B) “Respon-
sibilities” r(i,k) are sent from data points to
candidate exemplars and indicate how
strongly each data point favors the candi-
date exemplar over other candidate exem-
plars. (C) “Availabilities” a(i,k) are sent
from candidate exemplars to data points
and indicate to what degree each candidate exemplar is available as a cluster center for the data point. (D) The effect of the value of the input preference
(common for all data points) on the number of identified exemplars (number of clusters) is shown. The value that was used in (A) is also shown, which was
computed from the median of the pairwise similarities.
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tion criterion of squared error. We used both
affinity propagation and k-centers clustering to
identify exemplars among 900 grayscale images
extracted from the Olivetti face database (3).
Affinity propagation found exemplars with
much lower squared error than the best of 100
runs of k-centers clustering (Fig. 2A), which
took about the same amount of computer time.
We asked whether a huge number of random
restarts of k-centers clustering could achieve the
same squared error. Figure 2B shows the error
achieved by one run of affinity propagation and
the distribution of errors achieved by 10,000
runs of k-centers clustering, plotted against the
number of clusters. Affinity propagation uni-
formly achieved much lower error in more than
two orders of magnitude less time. Another pop-
ular optimization criterion is the sum of ab-
solute pixel differences (which better tolerates
outlying pixel intensities), so we repeated the
above procedure using this error measure. Affin-
ity propagation again uniformly achieved lower
error (Fig. 2C).

Many tasks require the identification of ex-
emplars among sparsely related data, i.e., where
most similarities are either unknown or large
and negative. To examine affinity propagation in

this context, we addressed the task of clustering
putative exons to find genes, using the sparse
similarity matrix derived from microarray data
and reported in (4). In that work, 75,066 seg-
ments of DNA (60 bases long) corresponding to
putative exons were mined from the genome of
mouse chromosome 1. Their transcription levels
were measured across 12 tissue samples, and the
similarity between every pair of putative exons
(data points) was computed. The measure of
similarity between putative exons was based on
their proximity in the genome and the degree of
coordination of their transcription levels across
the 12 tissues. To account for putative exons
that are not exons (e.g., introns), we included an
additional artificial exemplar and determined the
similarity of each other data point to this “non-
exon exemplar” using statistics taken over the
entire data set. The resulting 75,067 × 75,067
similarity matrix (3) consisted of 99.73% sim-
ilarities with values of −∞, corresponding to
distant DNA segments that could not possibly
be part of the same gene. We applied affinity
propagation to this similarity matrix, but be-
cause messages need not be exchanged between
point i and k if s(i,k) = −∞, each iteration of
affinity propagation required exchanging mes-

sages between only a tiny subset (0.27% or 15
million) of data point pairs.

Figure 3A illustrates the identification of
gene clusters and the assignment of some data
points to the nonexon exemplar. The recon-
struction errors for affinity propagation and k-
centers clustering are compared in Fig. 3B.
For each number of clusters, affinity propa-
gation was run once and took 6 min, whereas
k-centers clustering was run 10,000 times and
took 208 hours. To address the question of how
well these methods perform in detecting bona
fide gene segments, Fig. 3C plots the true-
positive (TP) rate against the false-positive (FP)
rate, using the labels provided in the RefSeq
database (5). Affinity propagation achieved sig-
nificantly higher TP rates, especially at low
FP rates, which are most important to biolo-
gists. At a FP rate of 3%, affinity propagation
achieved a TP rate of 39%, whereas the best
k-centers clustering result was 17%. For com-
parison, at the same FP rate, the best TP rate
for hierarchical agglomerative clustering (2)
was 19%, and the engineering tool described
in (4), which accounts for additional bio-
logical knowledge, achieved a TP rate of 43%.

Affinity propagation’s ability to operate on the
basis of nonstandard optimization criteria makes
it suitable for exploratory data analysis using
unusual measures of similarity. Unlike metric-
space clustering techniques such as k-means
clustering (1), affinity propagation can be ap-
plied to problems where the data do not lie in a
continuous space. Indeed, it can be applied to
problems where the similarities are not symmet-
ric [i.e., s(i,k) ≠ s(k,i)] and to problems where the
similarities do not satisfy the triangle inequality
[i.e., s(i,k) < s(i, j) + s( j,k)]. To identify a small
number of sentences in a draft of this manuscript
that summarize other sentences, we treated each
sentence as a “bag of words” (6) and computed
the similarity of sentence i to sentence k based on
the cost of encoding the words in sentence i using
the words in sentence k. We found that 97% of
the resulting similarities (2, 3) were not symmet-
ric. The preferences were adjusted to identify
(using l = 0.8) different numbers of representa-
tive exemplar sentences (2), and the solution with
four sentences is shown in Fig. 4A.

We also applied affinity propagation to ex-
plore the problem of identifying a restricted
number of Canadian and American cities that
are most easily accessible by large subsets of
other cities, in terms of estimated commercial
airline travel time. Each data point was a city,
and the similarity s(i,k) was set to the negative
time it takes to travel from city i to city k by
airline, including estimated stopover delays (3).
Due to headwinds, the transit time was in many
cases different depending on the direction of
travel, so that 36% of the similarities were
asymmetric. Further, for 97% of city pairs i
and k, there was a third city j such that the
triangle inequality was violated, because the
trip from i to k included a long stopover delay

Fig. 2. Clustering faces. Exemplars minimizing the standard squared error measure of similarity were
identified from 900 normalized face images (3). For a common preference of −600, affinity
propagation found 62 clusters, and the average squared error was 108. For comparison, the best of
100 runs of k-centers clustering with different random initializations achieved a worse average
squared error of 119. (A) The 15 images with highest squared error under either affinity propagation
or k-centers clustering are shown in the top row. The middle and bottom rows show the exemplars
assigned by the two methods, and the boxes show which of the two methods performed better for that
image, in terms of squared error. Affinity propagation found higher-quality exemplars. (B) The
average squared error achieved by a single run of affinity propagation and 10,000 runs of k-centers
clustering, versus the number of clusters. The colored bands show different percentiles of squared
error, and the number of exemplars corresponding to the result from (A) is indicated. (C) The above
procedure was repeated using the sum of absolute errors as the measure of similarity, which is also a
popular optimization criterion.
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in city j so it took longer than the sum of the
durations of the trips from i to j and j to k.
When the number of “most accessible cities”
was constrained to be seven (by adjusting the
input preference appropriately), the cities
shown in Fig. 4, B to E, were identified. It is
interesting that several major cities were not
selected, either because heavy international
travel makes them inappropriate as easily ac-
cessible domestic destinations (e.g., New York

City, Los Angeles) or because their neigh-
borhoods can be more efficiently accessed
through other destinations (e.g., Atlanta, Phil-
adelphia, and Minneapolis account for Chi-
cago’s destinations, while avoiding potential
airport delays).

Affinity propagation can be viewed as a
method that searches for minima of an energy
function (7) that depends on a set of N hidden
labels, c1,…,cN, corresponding to the N data

points. Each label indicates the exemplar to
which the point belongs, so that s(i,ci) is the
similarity of data point i to its exemplar. ci = i
is a special case indicating that point i is itself
an exemplar, so that s(i,ci) is the input pref-
erence for point i. Not all configurations of the
labels are valid; a configuration c is valid when
for every point i, if some other point i′ has
chosen i as its exemplar (i.e., ci′ = i), then i must
be an exemplar (i.e., ci = i). The energy of a
valid configuration is E(c) = −∑ i=1

N s(i,ci). Ex-
actly minimizing the energy is computationally
intractable, because a special case of this min-
imization problem is the NP-hard k-median prob-
lem (8). However, the update rules for affinity
propagation correspond to fixed-point recursions
for minimizing a Bethe free-energy (9) approx-
imation. Affinity propagation is most easily de-
rived as an instance of the max-sum algorithm
in a factor graph (10) describing the constraints
on the labels and the energy function (2).

In some degenerate cases, the energy function
may have multiple minima with corresponding
multiple fixed points of the update rules, and
these may prevent convergence. For example, if
s(1,2) = s(2,1) and s(1,1) = s(2,2), then the solu-
tions c1 = c2 = 1 and c1 = c2 = 2 both achieve the
same energy. In this case, affinity propagation
may oscillate, with both data points alternating
between being exemplars and nonexemplars. In
practice, we found that oscillations could always
be avoided by adding a tiny amount of noise to
the similarities to prevent degenerate situations,
or by increasing the damping factor.

Affinity propagation has several advan-
tages over related techniques. Methods such
as k-centers clustering (1), k-means clustering
(1), and the expectation maximization (EM)
algorithm (11) store a relatively small set of esti-
mated cluster centers at each step. These tech-
niques are improved upon by methods that begin
with a large number of clusters and then prune
them (12), but they still rely on random sampling
and make hard pruning decisions that cannot be
recovered from. In contrast, by simultaneously
considering all data points as candidate centers
and gradually identifying clusters, affinity propa-
gation is able to avoid many of the poor solutions
caused by unlucky initializations and hard deci-
sions. Markov chain Monte Carlo techniques
(13) randomly search for good solutions, but do
not share affinity propagation's advantage of
considering many possible solutions all at once.

Hierarchical agglomerative clustering (14)
and spectral clustering (15) solve the quite dif-
ferent problem of recursively comparing pairs of
points to find partitions of the data. These tech-
niques do not require that all points within a
cluster be similar to a single center and are thus
not well-suited to many tasks. In particular, two
points that should not be in the same cluster
may be grouped together by an unfortunate se-
quence of pairwise groupings.

In (8), it was shown that the related metric
k-median problem could be relaxed to form a

Fig. 3. Detecting genes. Affinity propagation was
used to detect putative exons (data points) com-
prising genes from mouse chromosome 1. Here,
squared error is not appropriate as a measure of
similarity, but instead similarity values were
derived from a cost function measuring proximity
of the putative exons in the genome and co-
expression of the putative exons across 12 tissue
samples (3). (A) A small portion of the data and
the emergence of clusters during each iteration of
affinity propagation are shown. In each picture,
the 100 boxes outlined in black correspond to 100

data points (from a total of 75,066 putative exons), and the 12 colored blocks in each box indicate the
transcription levels of the corresponding DNA segment in 12 tissue samples. The box on the far left
corresponds to an artificial data point with infinite preference that is used to account for nonexon
regions (e.g., introns). Lines connecting data points indicate potential assignments, where gray
lines indicate assignments that currently have weak evidence and solid lines indicate assignments
that currently have strong evidence. (B) Performance on minimizing the reconstruction error of
genes, for different numbers of detected clusters. For each number of clusters, affinity propagation
took 6 min, whereas 10,000 runs of k-centers clustering took 208 hours on the same computer. In
each case, affinity propagation achieved a significantly lower reconstruction error than k-centers
clustering. (C) A plot of true-positive rate versus false-positive rate for detecting exons [using labels
from RefSeq (5)] shows that affinity propagation also performs better at detecting biologically
verified exons than k-centers clustering.
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linear program with a constant factor approxima-
tion. There, the input was assumed to be metric,
i.e., nonnegative, symmetric, and satisfying the
triangle inequality. In contrast, affinity propagation
can take as input general nonmetric similarities.
Affinity propagation also provides a conceptually
new approach that works well in practice. Where-
as the linear programming relaxation is hard to
solve and sophisticated software packages need to

be applied (e.g., CPLEX), affinity propagation
makes use of intuitive message updates that can
be implemented in a few lines of code (2).

Affinity propagation is related in spirit to tech-
niques recently used to obtain record-breaking
results in quite different disciplines (16). The ap-
proach of recursively propagating messages
(17) in a “loopy graph” has been used to ap-
proach Shannon’s limit in error-correcting de-

coding (18, 19), solve random satisfiability
problems with an order-of-magnitude increase in
size (20), solve instances of the NP-hard two-
dimensional phase-unwrapping problem (21), and
efficiently estimate depth from pairs of stereo
images (22). Yet, to our knowledge, affinity prop-
agation is the first method to make use of this idea
to solve the age-old, fundamental problem of
clustering data. Because of its simplicity, general
applicability, and performance, we believe affin-
ity propagation will prove to be of broad value in
science and engineering.
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Fig. 4. Identifying key sentences and air-travel routing. Affinity propagation can be used to explore
the identification of exemplars on the basis of nonstandard optimization criteria. (A) Similarities between
pairs of sentences in a draft of this manuscript were constructed by matching words. Four exemplar
sentences were identified by affinity propagation and are shown. (B) Affinity propagation was applied to
similarities derived from air-travel efficiency (measured by estimated travel time) between the 456 busiest
commercial airports in Canada and the United States—the travel times for both direct flights (shown in
blue) and indirect flights (not shown), including the mean transfer time of up to a maximum of one
stopover, were used as negative similarities (3). (C) Seven exemplars identified by affinity propagation are
color-coded, and the assignments of other cities to these exemplars is shown. Cities located quite near to
exemplar cities may be members of other more distant exemplars due to the lack of direct flights between
them (e.g., Atlantic City is 100 km from Philadelphia, but is closer in flight time to Atlanta). (D) The inset
shows that the Canada-USA border roughly divides the Toronto and Philadelphia clusters, due to a larger
availability of domestic flights compared to international flights. However, this is not the case on the west
coast as shown in (E), because extraordinarily frequent airline service between Vancouver and Seattle
connects Canadian cities in the northwest to Seattle.
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